Premium
Nitrogen‐Doped Cobalt Ferrite/Carbon Nanocomposites for Supercapacitor Applications
Author(s) -
Alshehri Saad M.,
Ahmed Jahangeer,
Alhabarah Ameen N.,
Ahamad Tansir,
Ahmad Tokeer
Publication year - 2017
Publication title -
chemelectrochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.182
H-Index - 59
ISSN - 2196-0216
DOI - 10.1002/celc.201700602
Subject(s) - materials science , chronoamperometry , nanocomposite , cyclic voltammetry , supercapacitor , x ray photoelectron spectroscopy , horizontal scan rate , nanoparticle , analytical chemistry (journal) , chemical engineering , capacitance , nuclear chemistry , nanotechnology , electrode , electrochemistry , chemistry , organic chemistry , engineering
Abstract Nitrogen‐doped CoFe 2 O 4 /C (NCFC) nanocomposites (NCs) with an average size of 10 nm were obtained from the polymeric route, using egg white albumin followed by firing at 700 °C/3 h under the flow of helium gas. Structural and morphological studies of prepared materials were investigated by using powder X‐day diffraction, X‐ray photoelectron spectroscopy, and electron microscopic techniques. NCFC‐NCs exhibit excellent supercapacitive performances compared to pure MFe 2 O 4 nanoparticles (M=Ni, Co, Cu, etc.). The specific capacitance ( C s) of NCFC‐NCs was found to be approximately 474 F/g, which is around five times higher than that of pure CoFe 2 O 4 nanoparticles ( C s=94 F/g) at a scan rate of 5 mV/s in 5 M KOH. The energy densities of NCFC‐NCs and pure CoFe 2 O 4 nanoparticles were found to be about 116 and 23 Wh/kg, respectively. Galvanostatic charge−discharge measurements of NCFC‐NCs reveals the loss of less energy and the discharge time of the nanocomposites was found to be approximately ten times higher compared to pure CoFe 2 O 4 nanoparticles for 50 segments. The stability tests of the materials were also carried out by the cyclic voltammetry, chronoamperometry, and chronopotentiometric measurements for the purpose of industrial applications.