Premium
Paving the Way towards Highly Stable and Practical Electrolytes for Rechargeable Magnesium Batteries
Author(s) -
Tutusaus Oscar,
Mohtadi Rana
Publication year - 2015
Publication title -
chemelectrochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.182
H-Index - 59
ISSN - 2196-0216
DOI - 10.1002/celc.201402207
Subject(s) - electrolyte , passivation , anode , corrosion , materials science , nanotechnology , battery (electricity) , computer science , chemistry , metallurgy , electrode , physics , power (physics) , layer (electronics) , quantum mechanics
Despite being considered a promising anode candidate for future battery technologies, the reactivity of Mg metal and its resultant passivation have challenged the development of electrolytes for rechargeable Mg batteries. In this Concept article, we shed light on critical past and current motivations, hurdles, and design strategies of electrolyte development for Mg batteries. Special focus is given to the most recent advancements; in particular, we elaborate on bottom‐up design strategies targeted to overcome the corrosion issue caused by current electrolyte systems. Salts containing the BH motif expanded the portfolio of Mg‐compatible electrolytes and are used as a platform to create a whole new promising family. Here, we explain the approach, challenges, and the path forward for ultimately creating Mg‐compatible, highly stable, and non‐corrosive Mg electrolytes.