Premium
Maximum Spreading of Urea Water Solution during Drop Impingement
Author(s) -
Börnhorst Marion,
Cai Xuan,
Wörner Martin,
Deutschmann Olaf
Publication year - 2019
Publication title -
chemical engineering and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.403
H-Index - 81
eISSN - 1521-4125
pISSN - 0930-7516
DOI - 10.1002/ceat.201800755
Subject(s) - shadowgraphy , radius , drop (telecommunication) , mechanics , wetting , urea , materials science , phase (matter) , computer simulation , thermodynamics , chemistry , optics , physics , composite material , mechanical engineering , engineering , laser , computer security , organic chemistry , computer science
Droplet impingement of urea water solution (UWS) is a common source for liquid film and solid deposits formed in the tailpipe of diesel engines. In order to better understand and predict wetting phenomena on the tailpipe wall, this study focuses on droplet spreading dynamics of urea water solution. Impingement of single droplets is investigated under defined conditions by high‐speed imaging using shadowgraphy technique. The experimental studies are complemented by numerical simulations with a phase‐field method. Computational results are in good agreement with experimental data for the advancing phase of spreading and the maximum and terminal spreading radius, whereas for the receding phase notable differences occur. For the maximum spreading radius, an empirical correlation derived for glycerol‐water‐ethanol mixtures is found to be valid for millimeter‐sized UWS droplets as well. A numerical simulation for a much smaller droplet however indicates that this correlation is not valid for the tiny droplets of UWS sprays in technical applications.