z-logo
Premium
Static and Dynamic, but not Pulsed High‐Pressure Treatment Efficiently Inactivates Yeast
Author(s) -
Izydor Marika,
Hainthaler Markus,
Gaipl Udo S.,
Frey Benjamin,
Schlücker Eberhard
Publication year - 2017
Publication title -
chemical engineering and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.403
H-Index - 81
eISSN - 1521-4125
pISSN - 0930-7516
DOI - 10.1002/ceat.201600290
Subject(s) - yeast , cabin pressurization , membrane , dynamic pressure , chemistry , static pressure , high pressure , biophysics , materials science , mechanics , biochemistry , biology , composite material , physics
Static high‐pressure (HP) treatment has become a powerful tool for preserving foodstuffs, allowing high inactivation rates and minimal adverse effects on valuable components. Due to HP maxima and batch mode conditions, it is restricted to high‐grade products. To overcome these restrictions, dynamic HP offers the possibility of a quasi‐continuous mode of operation. The effects of three different HP treatments (static, pulsed, and dynamic) on yeast were investigated. The inactivation efficiency and membrane damage increase with increasing pressure or pressure holding time. The cells do not show higher sensitivity to fast and repeated depressurization, and the number of pressure pulses plays only a minor role in inducing membrane damage. A form of programmed cell death could not be detected.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom