Premium
Predicting Permeate Fluxes and Rejection Rates in Reverse Osmosis and Tight‐Nanofiltration Processes
Author(s) -
Lopes Gustavo H.,
Ibaseta Nelson,
Guichardon Pierrette,
Haldenwang Pierre
Publication year - 2015
Publication title -
chemical engineering and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.403
H-Index - 81
eISSN - 1521-4125
pISSN - 0930-7516
DOI - 10.1002/ceat.201400654
Subject(s) - nanofiltration , reverse osmosis , membrane , permeation , mechanics , permeability (electromagnetism) , desalination , chemistry , materials science , process engineering , thermodynamics , engineering , physics , biochemistry
Abstract The performance of reverse osmosis and tight nanofiltration with flat‐sheet membranes can be predicted accurately. The proposed numerical model solves the local momentum and mass conservation equations in the module's feed channel with solution‐diffusion boundary conditions. Both qualitative and quantitative predictions of the permeate flux and of the rejection rate are obtained with an accuracy depending on the limitations of the solution‐diffusion model for describing membrane mass transport and on the value of solute permeability. As an extension of the applications to plate‐and‐frame modules, the ability to describe the performance of processes carried out with spiral‐wound modules is also tested with own desalination experiments and with data from the literature.