Premium
Prediction of the Induced Gas Flow Rate from a Self‐Inducing Impeller with CFD
Author(s) -
Fonte Cláudio P.,
Pinho Bruno S.,
SantosMoreau Vania,
Lopes José Carlos B.
Publication year - 2014
Publication title -
chemical engineering and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.403
H-Index - 81
eISSN - 1521-4125
pISSN - 0930-7516
DOI - 10.1002/ceat.201300412
Subject(s) - impeller , computational fluid dynamics , mechanics , volumetric flow rate , turbulence , flow (mathematics) , materials science , mechanical engineering , thermodynamics , engineering , physics
The complex task of describing computationally two‐phase turbulent flows in aerated stirred‐tank reactors was overcome by proposing that the gas flow rate in the hollow impeller can be estimated from single‐phase flow simulations of the liquid phase in the reactor: the pressure at the impeller surface obtained from liquid phase simulations can be related to the gas induction rate. A commercial lab‐scale reactor with a radial six‐bladed hollow impeller was chosen for the study. To validate the presented methodology, the induced gas flow rate was measured experimentally from the tracking of the position of bubbles in a dynamic sequence of flow images. Notwithstanding the simplifications assumed in the presented CFD methodology, good agreement has been obtained between numerical results and experiments.