z-logo
Premium
Experimental Investigation and Modeling Approach of the Phenylacetonitrile Alkylation Process in a Microreactor
Author(s) -
Borovinskaya E. S.,
Mammitzsch L.,
Uvarov V. M.,
Schael F.,
Reschetilowski W.
Publication year - 2009
Publication title -
chemical engineering and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.403
H-Index - 81
eISSN - 1521-4125
pISSN - 0930-7516
DOI - 10.1002/ceat.200800672
Subject(s) - microreactor , alkylation , process (computing) , batch reactor , chemistry , process engineering , computer science , organic chemistry , catalysis , engineering , operating system
The application of microreaction technology has the potential to intensify chemical processes. It is therefore of great interest to investigate the operating efficiency of a multiphase process such as the alkylation of phenylacetonitrile in a microreactor and to compare the performance to a batch reactor. The undeniable advantages of continuous microreactor systems for this process were demonstrated. Furthermore, the influence of the organic to aqueous phase ratio in the microreactor was investigated. A model of the reaction course was formulated based on experimental data. This model was used in the analysis and modeling of the alkylation process in a microreactor and found to be adequate. The optimal microreactor performance conditions were determined using the numerical optimization technique (Harrington's desirability function) and confirmed by experiments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom