Premium
Enhancement Boiling Heat Transfer Study of a Newly Compact In‐line Bundle Evaporator under Reduced Pressure Conditions
Author(s) -
Liu Z.H.,
Liao L.
Publication year - 2006
Publication title -
chemical engineering and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.403
H-Index - 81
eISSN - 1521-4125
pISSN - 0930-7516
DOI - 10.1002/ceat.200500238
Subject(s) - nucleate boiling , heat transfer , superheating , boiling , heat transfer enhancement , critical heat flux , heat flux , materials science , tube (container) , enhanced heat transfer , bundle , thermodynamics , heat transfer coefficient , mechanics , chemistry , composite material , physics
For common flooded‐type evaporators, nucleate boiling heat transfer cannot occur on the heated tubes since heat fluxes and wall superheats of heated tubes are generally quite low. However, when the tube spacing is very small, nucleate boiling in restricted spaces can occur easily under low heat flux or low wall superheat conditions. The generation of nucleate boiling can effectively enhance the heat transfer performance of bundle evaporators. This study investigated experimentally the boiling heat transfer enhancement effects of the restricted space in compact in‐line tube bundles with smooth tubes under various reduced pressures. The experimental results show that the compact in‐line tube bundles have a significantly enhanced heat transfer compared to those of the common tube bundles, and there is an optimum tube spacing that provides the greatest heat transfer enhancement effect. The test pressures have a marked influence on the boiling heat transfer enhancement in the compact bundles. The heat transfer enhancement effect decreases with decreasing test pressure. In addition, the heat transfer enhancement effects of the in‐line tube bundles are also compared with those of the staggered bundles. Under reduced pressure, there is no significant difference between the heat transfer enhancement effects for the two types of bundles.