z-logo
Premium
Understanding the Structure‐Activity Relationship of Ni‐Catalyzed Amide C−N Bond Activation using Distortion/Interaction Analysis
Author(s) -
Xie. PeiPei,
Qin ZhiXin,
Zhang ShuoQing,
Hong Xin
Publication year - 2021
Publication title -
chemcatchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.497
H-Index - 106
eISSN - 1867-3899
pISSN - 1867-3880
DOI - 10.1002/cctc.202100672
Subject(s) - chemistry , amide , reactivity (psychology) , peptide bond , oxidative addition , stereochemistry , heterolysis , catalysis , organic chemistry , medicine , alternative medicine , pathology , enzyme
Transition metal‐catalyzed amide C−N bond activation has emerged as a powerful strategy to utilize amides in synthetic transformations. The key mechanistic basis for the rational design of amide reagents is the structure‐activity relationship of amide C−N bond activation. In this work, the controlling factors of Ni/PCy 3 ‐catalyzed amide C−N bond activation barrier are elucidated with density functional theory (DFT) calculations and distortion/interaction analysis. We found that the substrate distortion is the key factor that differentiates the amide reactivity in the C−N bond activation. The substrate distortion of amide is associated with two distinctive structure‐activity relationships. The general planar amides undergo a classic three‐membered ring oxidative addition to cleave the C−N bond, in which the C−N heterolytic bond dissociation energy has a linear relationship with the activation barrier. The twisted amides have a chelation‐assisted transition state for the amide C−N bond cleavage, and the twisted angle τ can serve as a predictive parameter for the reactivity of the twisted amides. The understanding of the structure‐activity relationship of amide C−N bond activation provides a rational and predictive basis for future reaction designs involving transition metal‐catalyzed amide C−N bond activation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom