Premium
Hydrodesulfurization Properties of Nickel Phosphide on Boron‐treated Alumina Supports
Author(s) -
Miles Catherine E.,
Carlson Tess R.,
Morgan Benjamin J.,
Topalian Peter J.,
Schare Jacob R.,
Bussell Mark E.
Publication year - 2020
Publication title -
chemcatchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.497
H-Index - 106
eISSN - 1867-3899
pISSN - 1867-3880
DOI - 10.1002/cctc.202000755
Subject(s) - hypophosphite , phosphide , hydrodesulfurization , catalysis , nickel , boron , chemistry , nuclear chemistry , phosphate , x ray photoelectron spectroscopy , heterogeneous catalysis , inorganic chemistry , chemical engineering , organic chemistry , engineering
The deep hydrodesulfurization (HDS) properties of nickel phosphide (Ni 2 P) on boron‐modified alumina (xB−Al 2 O 3 ) supports having different B contents have been investigated. Ni 2 P precursors were prepared on the xB−Al 2 O 3 supports using hypophosphite (‐hypo) or phosphate (‐phos) as the P source and were subsequently reduced in flowing hydrogen. The 4,6‐dimethyldibenzothiophene HDS activities and turnover frequencies of the Ni 2 P/xB−Al 2 O 3 catalysts showed a strong dependence on B loading, with a maximum observed for the hypophosphite‐ and phosphate‐based Ni 2 P/B−Al 2 O 3 catalysts corresponding to 0.8 wt % and 1.2 wt % B loadings, respectively. Based on XPS and IR spectral measurements, the optimal B loadings corresponded to ∼20 % B 2 O 3 coverage of the γ‐Al 2 O 3 support and coincided with removal of the most basic hydroxyl groups on the alumina surface. At 573 K, a Ni 2 P/0.8B−Al 2 O 3 ‐hypo catalyst was 2.5 times more active than a B‐free Ni 2 P/Al 2 O 3 ‐hypo catalyst, while a Ni 2 P/1.2B−Al 2 O 3 ‐phos catalyst was 8.6 times more active than a B‐free Ni 2 P/Al 2 O 3 ‐phos catalyst. Overall, the hypophosphite‐based Ni 2 P/B−Al 2 O 3 catalysts exhibited higher HDS activities than the phosphate‐based Ni 2 P/B−Al 2 O 3 catalysts, in part due to smaller Ni 2 P particle sizes. The optimized catalysts, Ni 2 P/0.8B−Al 2 O 3 ‐hypo and Ni 2 P/1.2B−Al 2 O 3 ‐phos , were more active than a sulfided Ni−Mo/Al 2 O 3 catalyst.