z-logo
Premium
Electrified Nanoconfined Biocatalysis with Rapid Cofactor Recycling
Author(s) -
Megarity Clare F.,
Siritanaratkul Bhavin,
Cheng Beichen,
Morello Giorgio,
Wan Lei,
Sills Adam J.,
Heath Rachel S.,
Turner Nicholas J.,
Armstrong Fraser A.
Publication year - 2019
Publication title -
chemcatchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.497
H-Index - 106
eISSN - 1867-3899
pISSN - 1867-3880
DOI - 10.1002/cctc.201901245
Subject(s) - biocatalysis , cofactor , chemistry , nanotechnology , combinatorial chemistry , catalysis , materials science , organic chemistry , enzyme , reaction mechanism
In living cells, the overall rates of catalytic reaction chains (cascades) are massively enhanced by nanoconfinement of enzymes in tiny enclosed volumes: presented in such a way, interdependent catalysts are highly concentrated, and distances (active site‐to‐active site) across which intermediates and cofactors must diffuse, may be tiny. In a parallel technology exploiting this principle, enzyme cascades are powered, amplified, and monitored in real time as they work in concert, being nanoconfined within the pores of an electrically conductive metal oxide electrode. The technology, nicknamed the electrochemical leaf, mimics chloroplast biosynthesis by exploiting nicotinamide adenine dinucleotide (NADP(H)) recycling catalysed by the flavoenzyme, ferredoxin NADP + reductase (FNR). Adsorbed on the inner walls of the nanopores, FNR rapidly transfers electrons between the electrode and NADP(H). This activity is coupled to an oxidoreductase enzyme, also nanoconfined within the pores, which recycles the cofactor and selectively synthesises a desired product or senses an analyte. Use of catalyst and cofactor is very efficient. The technology is simple, inexpensive and adaptable, and scalable to both microscopic levels (diagnostics) and macroscopic levels (organic synthesis). Whereas native FNR is specific for NADP(H), the technology can be extended by genetic engineering to include NAD(H) as recycling cofactor.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here