z-logo
Premium
Metal–Organic Framework Capillary Microreactor for Application in Click Chemistry
Author(s) -
Truter Lara A.,
JuanAlcañiz Jana,
Kapteijn Freek,
Nijhuis Tjeerd A.,
Gascon Jorge,
Schouten Jaap C.
Publication year - 2016
Publication title -
chemcatchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.497
H-Index - 106
eISSN - 1867-3899
pISSN - 1867-3880
DOI - 10.1002/cctc.201600016
Subject(s) - microreactor , click chemistry , catalysis , chemistry , reagent , cycloaddition , chemical engineering , metal organic framework , coating , green chemistry , organic chemistry , inorganic chemistry , reaction mechanism , adsorption , engineering
A Cu/PMA–MIL‐101(Cr) metal–organic‐framework‐coated microreactor has been applied in the 1,3‐dipolar cycloaddition of benzyl azide and phenylactetylene (click chemistry). The Cu/PMA–MIL‐101(Cr) catalyst was incorporated by using a washcoating method. The use of tetraethylorthosilicate (TEOS) and a copolymer pluronic F127 as binders resulted in a stable and uniform coating of 6 μm. The application of the Cu/PMA–MIL‐101(Cr) capillary microreactor in the click‐chemistry reaction resulted in a similar intrinsic activity as in the batch reactor, and a continuous production for more than 150 h time‐on‐stream could be achieved. The presence of water in the reagent feed led to reversible catalyst deactivation and was necessary to be removed to obtain a stable catalyst operation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom