z-logo
Premium
The Role of Metal Halides in Enhancing the Dehydration of Xylose to Furfural
Author(s) -
Enslow Kristopher R.,
Bell Alexis T.
Publication year - 2015
Publication title -
chemcatchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.497
H-Index - 106
eISSN - 1867-3899
pISSN - 1867-3880
DOI - 10.1002/cctc.201402842
Subject(s) - furfural , xylose , chemistry , aqueous solution , halide , inorganic chemistry , catalysis , organic chemistry , solvent , fermentation
The dehydration of xylose yields furfural, a product of considerable value as both a commodity chemical and a platform for producing a variety of fuels. When xylose is dehydrated in aqueous solution in the presence of a Brønsted acid catalyst, humins are formed via complex side processes that ultimately result in a loss in the yield of furfural. Such degradative processes can be minimized via the in situ extraction of furfural into an organic solvent. The partitioning of furfural from water into a given extracting solvent can be enhanced by the addition of salt to the aqueous phase, a process that increases the thermodynamic activity of furfural in water. Although the thermodynamics of using salts to improve liquid–liquid extraction are well studied, their impact on the kinetics of xylose dehydration catalyzed by a Brønsted acid are not. The aim of the present study was to understand how metal halide salts affect the mechanism and kinetics of xylose dehydration in aqueous solution. We found that the rate of xylose consumption is affected by both the nature of the salt cation and anion, increasing in the order no salt

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here