z-logo
Premium
Cascade of Liquid‐Phase Catalytic Transfer Hydrogenation and Etherification of 5‐Hydroxymethylfurfural to Potential Biodiesel Components over Lewis Acid Zeolites
Author(s) -
Jae Jungho,
Mahmoud Eyas,
Lobo Raul F.,
Vlachos Dionisios G.
Publication year - 2014
Publication title -
chemcatchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.497
H-Index - 106
eISSN - 1867-3899
pISSN - 1867-3880
DOI - 10.1002/cctc.201300978
Subject(s) - chemistry , lewis acids and bases , catalysis , yield (engineering) , organic chemistry , furan , biodiesel , lewis acid catalysis , alcohol , transfer hydrogenation , raw material , materials science , ruthenium , metallurgy
Abstract We report a one‐step process for the production of diesel fuel from biomass‐derived 5‐hydroxymethylfurfural (HMF). The reaction proceeds through the sequential transfer hydrogenation and etherification of HMF to 2,5‐bis(alkoxymethyl)furan, a potential biodiesel additive, catalyzed by a Lewis acid zeolite, such as Sn‐Beta or Zr‐Beta. An alcohol is used as a hydrogen donor and as a reactant in etherification. This cascade reaction can selectively produce high yields of the biodiesel additive (>80 % yield) from HMF with the Sn‐Beta catalyst and secondary alcohols, such as 2‐propanol and 2‐butanol.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here