z-logo
Premium
Fabrication, Characterization, and Photoelectrochemical Properties of Cu‐Doped PbTiO 3 and Its Hydrogen Production Activity
Author(s) -
Reddy K. Hemalata,
Parida Kulamani
Publication year - 2013
Publication title -
chemcatchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.497
H-Index - 106
eISSN - 1867-3899
pISSN - 1867-3880
DOI - 10.1002/cctc.201300462
Subject(s) - photoluminescence , doping , materials science , photocatalysis , hydrogen production , semiconductor , hydrogen , water splitting , band gap , analytical chemistry (journal) , copper , optoelectronics , chemistry , catalysis , metallurgy , biochemistry , organic chemistry , chromatography
Abstract We report herein the fabrication of visible‐light responsive n‐type PbTiO 3 by a combustion method and p‐type Cu‐doped PbTiO 3 by an impregnation method to improve hydrogen production activity. Copper was doped into the PbTiO 3 lattice up to 1 wt %; any further increase in the loading resulted in the formation of CuO on the surface of the sample. Photoluminescence confirmed that 1 wt % Cu‐doped PbTiO 3 effectively suppressed the defects in PbTiO 3 , which helped to reduce the recombination rate of the photoinduced charge carriers. The prepared PbTiO 3 photocatalyst behaves as an n‐type semiconductor, whereas 1 wt % Cu‐doped PbTiO 3 behaves as a p‐type semiconductor. The photocatalytic hydrogen production activity of PbTiO 3 increased with increasing Cu content up to 1 wt % and thereafter decreased upon further loading. The 1 wt % Cu‐doped PbTiO 3 sample showed higher activity for hydrogen liberation than pristine PbTiO 3 (2.5 times) and all of the other CuO‐loaded samples . The energy conversion efficiency of 1 wt % Cu‐doped PbTiO 3 was 5.95 % for hydrogen production under visible‐light irradiation. The enhanced hydrogen production activity of Cu‐doped PbTiO 3 was discussed on the basis of optimum copper doping, photoluminescence intensity, and their band‐edge positions. However, the higher activity of CuO‐loaded (>1 wt %) PbTiO 3 relative to that of neat PbTiO 3 is perhaps a result of the extensive light absorption properties of the CuO nanoparticles, which help to generate more electron–hole pairs on the surface.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here