Premium
OCT‐assessment of scaffold resorption: Analysis of strut intensity by a new resorption index for poly‐ l ‐lactic acid bioresorbable vascular scaffolds
Author(s) -
Blachutzik Florian,
Achenbach Stephan,
Marwan Mohamed,
Tröbs Monique,
Boeder Niklas,
Doerr Oliver,
Weissner Melissa,
Bauer Timm,
Nef Holger,
Hamm Christian,
Schlundt Christian
Publication year - 2019
Publication title -
catheterization and cardiovascular interventions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.988
H-Index - 116
eISSN - 1522-726X
pISSN - 1522-1946
DOI - 10.1002/ccd.28223
Subject(s) - medicine , resorption , diabetes mellitus , intensity (physics) , bone resorption , cardiology , surgery , gastroenterology , endocrinology , physics , quantum mechanics
Background The aim of this study was to analyze individual differences in resorption of bioresorbable vascular scaffolds (BRS) through optical coherence tomography (OCT) analysis and to identify factors potentially influencing the resorption process. Methods Between April 2016 and July 2017 clinically driven invasive coronary angiography and OCT examinations were performed in 36 patients who had previously been treated with a total of 48 BRS (ABSORB BVS, Abbott Vascular, Santa Clara, CA). For each scaffold, a new BRS‐RESORB‐INDEX (BRI) was calculated. Results The mean time interval since implantation was 789 ± 321 days. In OCT, BRS struts remained detectable in all 48 BRS. Normalized light intensity as a marker for the resorption of BRS struts increased with time in a linear fashion (Spearman Rho: p < .001, correlation coefficient = .90; R 2 [linear] = .91). Multivariable analysis identified diabetes (BRI of patients with diabetes vs. patients without diabetes: 0.34 ± 0.13 vs. 0.58 ± 0.22; p = .002) and presence of Peri‐strut low intensity areas (PSLIA, BRI of 10 patients with PSLIA vs. 26 patients without PSLIA: 0.44 ± 0.21 vs. 0.61 ± 18; p = .027) as independent predictors for a prolonged BRS resorption, whereas the resorption rate in ACS patients (STEMI, NSTEMI, and unstable angina; n = 13) was significantly higher as compared to patients without ACS (0.62 ± 0.17 vs. 0.43 ± 0.24; p = .012). Conclusion In humans, BRS resorption rate is significantly influenced by numerous factors. Our data suggest that diabetes and PSLIA are associated with a prolonged resorption process, whereas in ACS patients, BRS resorption appears to be significantly faster.