z-logo
Premium
Netrin‐1 regulates ERK1/2 signaling pathway and autophagy activation in wear particle‐induced osteoclastogenesis
Author(s) -
Wang Lei,
Gao Zhibiao,
Zhang Jie,
Huo Yulong,
Xu Qiang,
Qiu Yusheng
Publication year - 2021
Publication title -
cell biology international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.932
H-Index - 77
eISSN - 1095-8355
pISSN - 1065-6995
DOI - 10.1002/cbin.11544
Subject(s) - autophagy , osteolysis , osteoclast , bone resorption , proinflammatory cytokine , rankl , microbiology and biotechnology , chemistry , resorption , inflammation , in vitro , medicine , biology , immunology , receptor , biochemistry , apoptosis , dentistry , activator (genetics)
Background Artificial joint replacement surgery is often accompanied by osteolysis induced aseptic loosening around the prosthesis. Wear particles from joint replacement are thought to be one of the main factors leading to local inflammation and osteolysis at the prosthesis site. The aim of this study was to investigate the molecular mechanism of osteoclast formation and dissolution induced by wear particles and the potential roles of Netrin‐1, the ERK1/2 pathway and autophagy activation in this process. Methods The messenger RNA levels in cells and tissues were detected with real‐time quantitative PCR. The western blotting was used to detect the expression of proteins. A CCK‐8 kit was used to detect the viability of RAW 264.7 cells. Moreover, an air pouch model of bone resorption was established. Immunohistochemistry was used to detect the expression of TRAP and Netrin‐1 in rat bone tissue. Cell culture supernatants were collected in the rat air pouch model of bone resorption, and the levels of RANKL and OPG were detected with enzyme‐linked immunosorbent assay. The protein levels of TRAP and Netrin‐1 in bone tissue were examined by immunohistochemistry. Results Titanium wear particles induced osteoclast formation and autophagy activation. Moreover, blocking autophagy suppressed the osteoclastogenesis after exposure to wear particles in vitro. The activation of the ERK1/2 pathway and the overexpression of Netrin‐1 were both found to play important roles in osteoclastogenesis mediated by autophagy. Moreover, 3‐MA effectively decreased the secretion of proinflammatory cytokines mediated by wear particles. Conclusion Blockade of autophagy inhibits the osteoclastogenesis and inflammation induced by wear particles, thus potentially providing novel treatment strategies for abnormal osteoclastogenesis and aseptic prosthesis loosening induced by wear particles.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here