z-logo
Premium
Effects of mechanical vibration on cell morphology, proliferation, apoptosis, and cytokine expression/secretion in osteocyte‐like MLO‐Y4 cells exposed to high glucose
Author(s) -
Sun Tao,
Yan Zedong,
Cai Jing,
Shao Xi,
Wang Dan,
Ding Yuanjun,
Feng Ying,
Yang Jingyue,
Luo Erping,
Feng Xue,
Jing Da
Publication year - 2020
Publication title -
cell biology international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.932
H-Index - 77
eISSN - 1095-8355
pISSN - 1065-6995
DOI - 10.1002/cbin.11221
Subject(s) - osteoprotegerin , viability assay , rankl , chemistry , osteocyte , apoptosis , medicine , osteoblast , endocrinology , mtt assay , microbiology and biotechnology , receptor , biology , activator (genetics) , biochemistry , in vitro
Abstract Diabetic patients exhibit significant bone deterioration. Our recent findings demonstrate that mechanical vibration is capable of resisting diabetic bone loss, whereas the relevant mechanism remains unclear. We herein examined the effects of mechanical vibration on the activities and functions of osteocytes (the most abundant and well‐recognized mechanosensitive cells in the bone) exposed to high glucose (HG). The osteocytic MLO‐Y4 cells were incubated with 50 mM HG for 24 h, and then stimulated with 1 h/day mechanical vibration (0.5 g, 45 Hz) for 3 days. We found that mechanical vibration significantly increased the proliferation and viability of MLO‐Y4 cells under the HG environment via the MTT, BrdU, and Cell Viability Analyzer assays. The apoptosis detection showed that HG‐induced apoptosis in MLO‐Y4 cells was inhibited by mechanical vibration. Moreover, increased cellular area, microfilament density, and anisotropy in HG‐incubated MLO‐Y4 cells were observed after mechanical vibration via the F‐actin fluorescence staining. The real‐time polymerase chain reaction and western blotting results demonstrated that mechanical vibration significantly upregulated the gene and protein expression of Wnt3a, β‐catenin, and osteoprotegerin (OPG) and decreased the sclerostin, DKK1, and receptor activator for nuclear factor‐κB ligand (RANKL) expression in osteocytes exposed to HG. The enzyme‐linked immunosorbent assay assays showed that mechanical vibration promoted the secretion of prostaglandin E 2 and OPG, and inhibited the secretion of tumor necrosis factor‐α and RANKL in the supernatant of HG‐treated MLO‐Y4 cells. Together, this study demonstrates that mechanical vibration improves osteocytic architecture and viability, and regulates cytokine expression and secretion in the HG environment, and implies the potential great contribution of the modulation of osteocytic activities in resisting diabetic osteopenia/osteoporosis by mechanical vibration.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here