Premium
G‐Quadruplex Formation in a Putative Coding Region of White Spot Syndrome Virus: Structural and Thermodynamic Aspects
Author(s) -
Vianney Yoanes Maria,
Purwanto Maria Goretti M.,
Weisz Klaus
Publication year - 2021
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.202100064
Subject(s) - circular dichroism , differential scanning calorimetry , g quadruplex , crystallography , biology , mutant , chemistry , dna , genetics , gene , physics , thermodynamics
White spot disease (WSD) is one of the most devastating viral infections of crustaceans caused by the white spot syndrome virus (WSSV). A conserved sequence WSSV131 in the DNA genome of WSSV was found to fold into a polymorphic G‐quadruplex structure. Supported by two mutant sequences with single G→T substitutions in the third G 4 tract of WSSV131 , circular dichroism and NMR spectroscopic analyses demonstrate folding of the wild‐type sequence into a three‐tetrad parallel topology comprising three propeller loops with a major 1 : 3 : 1 and a minor 1 : 2 : 2 loop length arrangement. A thermodynamic analysis of quadruplex formation by differential scanning calorimetry (DSC) indicates a thermodynamically more stable 1 : 3 : 1 loop isomer. DSC also revealed the formation of additional highly stable multimeric species with populations depending on potassium ion concentration.