z-logo
Premium
Site‐Directed Mutagenesis of Modular Polyketide Synthase Ketoreductase Domains for Altered Stereochemical Control
Author(s) -
Drufva Erin E.,
Spengler Nolan R.,
Hix Elijah G.,
Bailey Constance B.
Publication year - 2021
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.202000613
Subject(s) - polyketide , polyketide synthase , mutagenesis , context (archaeology) , directed mutagenesis , stereochemistry , chemistry , computational biology , lyase , enzyme , biochemistry , biology , biosynthesis , mutation , gene , mutant , paleontology
Bacterial modular type I polyketide synthases (PKSs) are complex multidomain assembly line proteins that produce a range of pharmaceutically relevant molecules with a high degree of stereochemical control. Due to their colinear properties, they have been considerable targets for rational biosynthetic pathway engineering. Among the domains harbored within these complex assembly lines, ketoreductase (KR) domains have been extensively studied with the goal of altering their stereoselectivity by site‐directed mutagenesis, as they confer much of the stereochemical complexity present in pharmaceutically active reduced polyketide scaffolds. Here we review all efforts to date to perform site‐directed mutagenesis on PKS KRs, most of which have been done in the context of excised KR domains on model diffusible substrates such as β‐keto N‐acetyl cysteamine thioesters. We also discuss the challenges around translating the findings of these studies to alter stereocontrol in the context of a complex multidomain enzymatic assembly line.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here