Premium
Membrane‐Associated Nucleobase‐Functionalized β‐Peptides (β‐PNAs) Affecting Membrane Support and Lipid Composition
Author(s) -
Höger Geralin A.,
Wiegand Markus,
Worbs Brigitte,
Diederichsen Ulf
Publication year - 2020
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.202000172
Subject(s) - circular dichroism , chemistry , membrane , lipid bilayer , peptide , membrane protein , biophysics , popc , peripheral membrane protein , nucleic acid , biochemistry , integral membrane protein , biology
Protein‐membrane interactions are essential to maintain membrane integrity and control membrane morphology and composition. Cytoskeletal proteins in particular are known to interact to a high degree with lipid bilayers and to line the cytoplasmic side of the plasma membrane with an extensive network structure. In order to gain a better mechanistical understanding of the protein–membrane interplay and possible membrane signaling, we started to develop a model system based on β‐peptide nucleic acids (β‐PNAs). These β‐peptides are known to form stable hydrogen‐bonded aggregates due to their helical secondary structure, which serve to pre‐organize the attached nucleobases. After optimization of the β‐PNA solid‐phase peptide synthesis and validation of helix formation, the ability of the novel β‐PNAs to dimerize and interact with lipid bilayers was investigated by both fluorescence and circular dichroism spectroscopy. It was shown that duplex formation occurs rapidly and with high specificity and could also be detected on the surfaces of the lipid bilayers. Hereby, the potential of a β‐PNA‐based peptide system to mimic membrane‐associated protein networks could be demonstrated.