Premium
In Vivo Incorporation of Azide Groups into DNA by Using Membrane‐Permeable Nucleotide Triesters
Author(s) -
Tera Masayuki,
Glasauer Stella M. K.,
Luedtke Nathan W.
Publication year - 2018
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.201800351
Subject(s) - azide , bioorthogonal chemistry , biochemistry , dna , nucleotide , hela , chemistry , thymidine , nucleic acid , dna synthesis , deoxyuridine , phosphate , biology , in vitro , combinatorial chemistry , click chemistry , gene , organic chemistry
Metabolic incorporation of bioorthogonal functional groups into cellular nucleic acids can be impeded by insufficient phosphorylation of nucleosides. Previous studies found that 5azidomethyl‐2′‐deoxyuridine (AmdU) was incorporated into the DNA of HeLa cells expressing a low‐fidelity thymidine kinase, but not by wild‐type HeLa cells. Here we report that membrane‐permeable phosphotriester derivatives of AmdU can exhibit enhanced incorporation into the DNA of wild‐type cells and animals. AmdU monophosphate derivatives bearing either 5′‐bispivaloyloxymethyl (POM), 5′‐bis‐(4‐acetoxybenzyl) (AB), or “Protide” protective groups were used to mask the phosphate group of AmdU prior to its entry into cells. The POM derivative “POM‐AmdU” exhibited better chemical stability, greater metabolic incorporation efficiency, and lower toxicity than “AB‐AmdU”. Remarkably, the addition of POM‐AmdU to the water of zebrafish larvae enabled the biosynthesis of azide‐modified DNA throughout the body.