Premium
Fluorescent 2‐Aminopyridine Nucleobases for Triplex‐Forming Peptide Nucleic Acids
Author(s) -
Cheruiyot Samwel K.,
Rozners Eriks
Publication year - 2016
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.201600182
Subject(s) - nucleobase , fluorescence , chemistry , nucleic acid , protonation , rna , dna , triple helix , base pair , combinatorial chemistry , peptide , stereochemistry , biochemistry , organic chemistry , ion , physics , quantum mechanics , gene
Development of new fluorescent peptide nucleic acids (PNAs) is important for fundamental research and practical applications. The goal of this study was the design of fluorogenic nucleobases for incorporation in triplex‐forming PNAs. The underlying design principle was the use of a protonation event that accompanied binding of a 2‐aminopyridine (M) nucleobase to a G‐C base pair as an on switch for a fluorescence signal. Two fluorogenic nucleobases, 3‐(1‐phenylethynyl)‐M and phenylpyrrolo‐M, were designed, synthesized and studied. The new M derivatives provided modest enhancement of fluorescence upon protonation but showed reduced RNA binding affinity and quenching of fluorescence signal upon triple‐helix formation with cognate double‐stranded RNA. Our study illustrates the principal challenges of design and provides guidelines for future improvement of fluorogenic PNA nucleobases. The 3‐(1‐phenylethynyl)‐M may be used as a fluorescent nucleobase to study PNA–RNA triple‐helix formation.