Premium
A Genetically Encodable System for Sequence‐Specific Detection of RNAs in Two Colors
Author(s) -
Kellermann Stefanie J.,
Rentmeister Andrea
Publication year - 2016
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.201500705
Subject(s) - rna , complementation , bimolecular fluorescence complementation , computational biology , biology , fluorescence , fluorescent protein , green fluorescent protein , genetics , gene , phenotype , physics , quantum mechanics
Multicolor readout is an important feature of RNA detection techniques aiming at the investigation of RNA localization. Several detection methods have been developed, however they require either transfection of cells with the probe or prior tagging of the target RNA. We report a fully genetically encodable system for simultaneous detection of two RNAs by using green and yellow fluorescence based on tetramolecular fluorescence complementation (TetFC). To obtain yellow fluorescent protein (YFP), substitution T203Y was introduced into one of the three non‐fluorescent GFP fragments; this was fused to different variants of the Homo sapiens Pumilio homology domain. Using different sets of fusion proteins we were able to discriminate between two closely related target RNAs based on the fluorescence signals at the respective wavelengths.