Premium
Activity of α‐Aminoadipate Reductase Depends on the N‐Terminally Extending Domain
Author(s) -
Kalb Daniel,
Lackner Gerald,
Rappe Marcus,
Hoffmeister Dirk
Publication year - 2015
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.201500190
Subject(s) - adenylylation , enzyme , reductase , biochemistry , in silico , domain (mathematical analysis) , chemistry , peptide , lysine , function (biology) , biosynthesis , amino acid , biology , stereochemistry , microbiology and biotechnology , gene , mathematical analysis , mathematics
L ‐α‐Aminoadipic acid reductases catalyze the ATP‐ and NADPH‐dependent reduction of L ‐α‐aminoadipic acid to the corresponding 6‐semialdehyde during fungal L ‐lysine biosynthesis. These reductases resemble peptide synthetases with regard to their multidomain composition but feature a unique domain of elusive function—now referred to as an adenylation activating (ADA) domain—that extends the reductase N‐terminally. Truncated enzymes based on NPS3, the L ‐α‐aminoadipic acid reductase of the basidiomycete Ceriporiopsis subvermispora , lacking the ADA domain either partially or entirely were tested for activity in vitro, together with an ADA‐adenylation didomain and the ADA domainless adenylation domain. We provide evidence that the ADA domain is required for substrate adenylation: that is, the initial step of the catalytic turnover. Our biochemical data are supported by in silico modeling that identified the ADA domain as a partial peptide synthetase condensation domain.