z-logo
Premium
Significant Enhancement of hPrx1 Chaperone Activity through Lysine Acetylation
Author(s) -
Pan Yanchao,
Jin JingHua,
Yu Yang,
Wang Jiangyun
Publication year - 2014
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.201402164
Subject(s) - acetylation , lysine , biochemistry , chemistry , chaperone (clinical) , cytoplasm , chromatin , microbiology and biotechnology , biology , amino acid , dna , gene , pathology , medicine
The reversible acetylation of proteins plays a key role in regulating biological processes, including chromatin remodeling, progression of the cell cycle, and actin nucleation. Human peroxiredoxin 1(hPrx1), one of the most abundant proteins in the cytoplasm, has been shown to be acetylated in human liver‐carcinoma tissues. However, little is known about what function(s) the acetylation serves for hPrx1. Herein, using the method of genetic code expansion, we incorporated N ε ‐acetyllysine (AcK) site‐specifically into hPrx1. Our data showed that acetylation the K 27 residue promotes oligomerization of hPrx1 at low concentrations. In addition, K 27 ‐acetylated hPrx1(hPrx1‐AcK27) exhibited greatly enhanced chaperone activity (e.g. protecting the protein malate dehydrogenase (MDH) from thermally induced aggregation and assisting the refolding of denatured citrate synthase (CS)). These findings suggest that the site‐specific acetylation of hPrx1 may change its biological role in response to environmental changes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here