Premium
Photochemical Control of DNA Structure through Radical Disproportionation
Author(s) -
San Pedro Joanna Maria N.,
Greenberg Marc M.
Publication year - 2013
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.201300369
Subject(s) - chemistry , ecorv , homolysis , photochemistry , radical , base excision repair , thymine , ap site , dna , nucleobase , nucleotide , bond cleavage , dna damage , stereochemistry , biochemistry , restriction enzyme , ecori , catalysis , gene
Photolysis of an aryl sulfide‐containing 5,6‐dihydropyrimidine ( 1 ) at 350 nm produces high yields of thymidine and products resulting from trapping of a 5,6‐dihydrothymidin‐5‐yl radical by O 2 or thiols. Thymidine is believed to result from disproportionation of the radical pair originally generated from CS bond homolysis of 1 on the microsecond timescale, which is significantly shorter than other photochemical transformations of modified nucleotides into their native forms. Duplex DNA containing 1 is destabilized, presumably due to disruption of π‐stacking. Incorporation of 1 within the binding site of the restriction endonuclease EcoRV provides a photochemical switch for turning on the enzyme's activity. In contrast, 1 is a substrate for endonuclease VIII and serves as a photochemical off switch for this base excision repair enzyme. Modification 1 also modulates the activity of the 10–23 DNAzyme, despite its incorporation into a nonduplex region. Overall, dihydropyrimidine 1 shows promise as a tool to provide spatiotemporal control over DNA structure on the miscrosecond timescale.