Premium
Arginine Mimetics Using α‐Guanidino Acids: Introduction of Functional Groups and Stereochemistry Adjacent to Recognition Guanidiniums in Peptides
Author(s) -
Balakrishnan Shalini,
Scheuermann Michael J.,
Zondlo Neal J.
Publication year - 2012
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.201100638
Subject(s) - arginine , amino acid , peptide , chemistry , molecular recognition , biochemistry , peptide synthesis , binding selectivity , stereochemistry , solid phase synthesis , organic chemistry , molecule
Arginine residues are broadly employed for specific biomolecular recognition, including in protein–protein, protein–DNA, and protein–RNA interactions. Arginine recognition commonly exploits the potential for bidentate electrostatic and hydrogen‐bonding interactions. However, in arginine residues, the guanidinium functional group is located at the terminus of a flexible hydrocarbon side chain, which lacks the functionality to contribute to specific arginine‐mediated recognition and may entropically disfavor binding. In order to enhance the potential for specificity and affinity in arginine‐mediated molecular recognition, we have developed an approach to the synthesis of peptides that incorporates an α‐guanidino acid as a novel arginine mimetic. α‐Guanidino acids, derived from α‐amino acids, with guanidinylation of the amino group, were incorporated stereospecifically into peptides on solid phase via coupling of an Fmoc amino acid to diaminopropionic acid (Dap), Fmoc deprotection, guanidinylation of the amine on solid phase, and deprotection, generating a peptide containing an α‐functionalized arginine mimetic. This approach was examined by incorporating arginine mimetics into ligands for the Src, Grb, and Crk SH3 domains at the site of the key recognition arginine. Protein binding was examined for peptides containing guanidino acids derived from Gly, L ‐Val, L ‐Phe, L ‐Trp, D ‐Val, D ‐Phe, and D ‐Trp. We demonstrate that paralogue specificity and target site affinity may be modulated with the use of α‐guanidino acid‐derived arginine mimetics, generating peptides that exhibit enhanced Src specificity by selection against Grb and peptides that reverse the specificity of the native peptide ligand, with enhancements in Src target specificity of up to 15‐fold (1.6 kcal mol −1 ).