z-logo
Premium
Design of Lanthanide Fingers: Compact Lanthanide‐Binding Metalloproteins
Author(s) -
am Ende Christopher W.,
Meng Hai Yun,
Ye Mao,
Pandey Anil K.,
Zondlo Neal J.
Publication year - 2010
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.201000056
Subject(s) - lanthanide , peptide , chemistry , circular dichroism , crystallography , binding site , stereochemistry , ligand (biochemistry) , metal , protein structure , biochemistry , receptor , organic chemistry , ion
Lanthanides have interesting chemical properties; these include luminescent, magnetic, and catalytic functions. Toward the development of proteins incorporating novel functions, we have designed a new lanthanide‐binding motif, lanthanide fingers. These were designed based on the Zif268 zinc finger, which exhibits a ββα structural motif. Lanthanide fingers utilize an Asp 2 Glu 2 metal‐coordination environment to bind lanthanides through a tetracarboxylate peptide ligand. The iterative design of a general lanthanide‐binding peptide incorporated the following key elements: 1) residues with high α‐helix and β‐sheet propensities in the respective secondary structures; 2) an optimized big box α‐helix N‐cap; 3) a Schellman α‐helix C‐cap motif; and 4) an optional D ‐Pro‐Ser type II’ β‐turn in the β‐hairpin. The peptides were characterized for lanthanide binding by circular dichroism (CD), NMR, and fluorescence spectroscopy. In all instances, stabilization of the peptide secondary structures resulted in an increase in metal affinity. The optimized protein design was a 25‐residue peptide that was a general lanthanide‐binding motif; this binds all lanthanides examined in a competitive aqueous environment, with a dissociation constant of 9.3 μ M for binding Er 3+ . CD spectra of the peptide‐lanthanide complexes are similar to those of zinc fingers and other ββα proteins. Metal binding involves residues from the N‐terminal β‐hairpin and the C terminal α‐helical segments of the peptide. NMR data indicated that metal binding induced a global change in the peptide structure. The D ‐Pro‐Ser type II’ β‐turn motif could be replaced by Thr–Ile to generate genetically encodable lanthanide fingers. Replacement of the central Phe with Trp generated genetically encodable lanthanide fingers that exhibited terbium luminescence greater than that of an EF‐hand peptide.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here