z-logo
Premium
DNA and RNA‐Controlled Switching of Protein Kinase Activity
Author(s) -
Röglin Lars,
Altenbrunn Frank,
Seitz Oliver
Publication year - 2009
Publication title -
chembiochem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.05
H-Index - 126
eISSN - 1439-7633
pISSN - 1439-4227
DOI - 10.1002/cbic.200800771
Subject(s) - peptide , nucleic acid , peptide nucleic acid , dna , chemistry , rna , conjugate , biochemistry , biophysics , stereochemistry , biology , gene , mathematical analysis , mathematics
Constrained : The readily programmable nucleic acid mediated recognition is used to constrain a phosphopeptide that was flanked by PNA segments. RNA‐based switching allows control over the activity of target enzymes such as the protein kinase Src. It might thus be feasible to transduce changes of the concentration of selected RNA molecules to changes of the activity of signal transduction proteins.Protein switches use the binding energy gained upon recognition of ligands to modulate the conformation and binding properties of protein segments. We explored whether the programmable nucleic acid mediated recognition might be used to design or mimic constraints that limit the conformational freedom of peptide segments. The aim was to design nucleic acid–peptide conjugates in which the peptide portion of the conjugate would change the affinity for a protein target upon hybridization. This approach was used to control the affinity of a PNA–phosphopeptide conjugate for the signal transduction protein Src kinase, which binds the cognate phosphopeptides in a linear conformation. Peptide–nucleic acid arms were attached to known peptide binders. The chimeric molecules were studied in three modes: 1) as single strands, 2) constrained by intermolecular hybridization (duplex formation) and 3) constrained by intramolecular hybridization (hairpin formation). Of note, duplexes that were designed to accommodate bulged peptide structures (for example, in hairpins or bulges) had lower binding affinities than duplexes in which the peptide was allowed to adopt a more relaxed conformation. Greater than 90‐fold differences in binding affinities were observed. It was, thus, feasible to make use of DNA hybridization to reversibly switch from no to almost complete inhibition of Src‐SH2–peptide binding, and vice versa. A series of DNA and PNA‐based hybridization experiments revealed the importance of charges and conformational effects. Nucleic acid mediated switching was extended to the use of RNA; this enabled a regulation of the enzymatic activity of the Src kinase. The proof‐of‐principle results demonstrate for the first time that PNA–peptide chimeras can transduce changes of the concentration of a given RNA molecule to changes of the activity of a signal transduction enzyme.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here