z-logo
Premium
KIF2C exerts an oncogenic role in nonsmall cell lung cancer and is negatively regulated by miR‐325‐3p
Author(s) -
Gan Huizhu,
Lin Lin,
Hu Nanjun,
Yang Yang,
Gao Yu,
Pei Yu,
Chen Kang,
Sun Butong
Publication year - 2019
Publication title -
cell biochemistry and function
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.933
H-Index - 61
eISSN - 1099-0844
pISSN - 0263-6484
DOI - 10.1002/cbf.3420
Subject(s) - gene knockdown , lung cancer , cancer research , suppressor , metastasis , cancer , biology , microrna , cell growth , medicine , oncology , cell culture , gene , genetics
Nonsmall cell lung cancer (NSCLC) is one of the leading causes of cancer‐related death worldwide. Kinesin family member 2C (KIF2C), a modulator in microtubule depolymerization, bipolar spindle formation, and chromosome segregation, has been reported to take roles in cancer biology, but its role in NSCLC remains unclear. This study was intended to investigate the expression and function of KIF2C in NSCLC. Our results demonstrated that KIF2C was up‐regulated in NSCLC tissues and cell lines. The high expression of KIF2C in NSCLC tissues was significantly correlated with higher T stage (0.0078), worse differentiation status (0.0049), and lymph node metastasis ( P  < .0001). We also proved that the high expression level of KIF2C predicted worse prognosis of the patients. After knockdown of KIF2C, the proliferation and metastasis of NSCLC cells were inhibited. Luciferase reporter assay suggested that KIF2C was a target gene of miR‐325‐3p, which was reported to be a tumour suppressor in NSCLC. In conclusion, this study proved an oncogenic role of KIF2C in NSCLC and partly clarified the mechanism of its high expression. Our findings provided a useful insight into the mechanism of NSCLC progression and offered clues to novel therapy strategies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here