Premium
Alterations in circulating angiogenic and anti‐angiogenic factors in type 2 diabetic patients with neuropathy
Author(s) -
Motawi Tarek Kamal,
Rizk Sherine Maher,
Ibrahim Ihab AbdelRahman,
ElEmady Yasmin Farid
Publication year - 2014
Publication title -
cell biochemistry and function
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.933
H-Index - 61
eISSN - 1099-0844
pISSN - 0263-6484
DOI - 10.1002/cbf.2987
Subject(s) - medicine , peripheral neuropathy , angiogenesis , diabetes mellitus , vascular endothelial growth factor , diabetic neuropathy , nitric oxide , type 2 diabetes mellitus , endocrinology , endoglin , gastroenterology , endothelin receptor , vegf receptors , receptor , stem cell , biology , cd34 , genetics
Diabetic peripheral neuropathy (DPN) is one of the most common diabetic chronic complications. There is an increased attention directed towards the role of angiogenic factors including vascular endothelial growth factor (VEGF) and anti‐angiogenic factors including soluble endoglin (sEng) as contributors to diabetic microvascular complications including neuropathy. The purposes of this study were to determine the role of these angiogenesis regulators in the prognosis of DPN. The study group included 60 patients with type 2 diabetes mellitus (T2DM) and 20 clinically healthy individuals. The patients were divided into two groups. Group I included 20 T2DM patients without peripheral neuropathy, and Group II consisted of 40 T2DM patients with DPN. In all groups, plasma VEGF, sEng and endothelin‐1 (ET‐1), nitric oxide and ET‐1 mRNA were estimated. Plasma levels of VEGF, sEng, ET‐1 and nitric oxide were significantly elevated in diabetic patients (Groups I and II) compared with healthy control subjects, with a higher increase in their levels in patients with DPN compared with diabetic patients without peripheral neuropathy. Measurement of plasma levels of angiogenesis‐related biomarkers in high‐risk diabetic patients might identify who later develop DPN, thus providing opportunities for early detection and targets for novel treatments. Copyright © 2013 John Wiley & Sons, Ltd.