Premium
Dissociation of c‐Met phosphotyrosine sites in human cells in response to mouse hepatocyte growth factor but not human hepatocyte growth factor: the possible roles of different amino acids in different species
Author(s) -
Ikebuchi Fumie,
Oka Kiyomasa,
Mizuno Shinya,
Fukuta Kazuhiro,
Hayata Daichika,
Ohnishi Hiroyuki,
Nakamura Toshikazu
Publication year - 2013
Publication title -
cell biochemistry and function
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.933
H-Index - 61
eISSN - 1099-0844
pISSN - 0263-6484
DOI - 10.1002/cbf.2898
Subject(s) - hepatocyte growth factor , hepatocyte , growth factor , chemistry , amino acid , biochemistry , microbiology and biotechnology , dissociation (chemistry) , biology , in vitro , receptor
Hepatocyte growth factor (HGF) is essential for embryogenesis, tissue regeneration and tumour malignancy through the activation of its receptor, c‐Met. We previously demonstrated that HGF α‐chain hairpin–loop, K1 domain and β‐chain are required for c‐Met signalling. The sequential phosphorylation of tyrosine residues, from c‐Met kinase domain to multidocking regions, is required for HGF‐signalling transduction. Herein, we provide evidence that the disconcerted activation of c‐Met tyrosine regions fails to induce biological functions. When human cells were incubated with ‘mouse HGF’, kinase domain activation (i.e. phospho‐Tyr‐1230/34/35) became evident, but the multidocking site ( i.e . Tyr‐1349) was not phosphorylated, resulting in unsuccessful induction of migration and mitogenesis. The binding ability of mouse HGF α‐chain, or of β‐chain, to human c‐Met was lower than that of human HGF, as evidenced by HGF–chimera assay. Notably, only four amino acid positions in HGF α‐chain hairpin–loop and K1 domain and six positions in β‐chain differed between human HGF and mouse HGF. The human‐specific amino acids (such as Gln‐95 in hairpin–loop, Arg‐134 in K1 domain and Cys‐561 in β‐chain) may be important for accurate c‐Met assembly and signalling transduction. Copyright © 2012 John Wiley & Sons, Ltd.