z-logo
Premium
Übergangsmetall‐Silyl‐Komplexe, 48. Synthese neuartiger heteronuklearer Silyl‐Zweikernkomplexe (OC) 3 (R 3 Si)Fe(μ‐PR′R″)Pt(1,5‐COD)(Fe‐Pt), Phosphan‐Austauschreaktionen an (OC) 3 (R 3 Si)Fe(μ‐PR′R″)Pt(PPh 3 ) 2 (Fe ‐ Pt) und Darstellung der Dihydrido‐Komplexe [(OC) 3 Fe(μ‐PPh 2 )(μ‐H) 2 Pt(PR 3 ) 2 ][BF 4 ](Fe ‐ Pt)
Author(s) -
Knorr Michael,
Stährfeldt Thomas,
Braunstein Pierre,
Reinhard Georg,
Hauenstein Peter,
Mayer Brigitte,
Schubert Ulrich,
Khan Saeed,
Kaesz Herbert D.
Publication year - 1994
Publication title -
chemische berichte
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.667
H-Index - 136
eISSN - 1099-0682
pISSN - 0009-2940
DOI - 10.1002/cber.19941270204
Subject(s) - chemistry , silylation , transition metal , oxidative addition , medicinal chemistry , ligand (biochemistry) , metal , stereochemistry , catalysis , organic chemistry , biochemistry , receptor
Transition Metal Silyl Complexes, 48[1]. ‐ Synthesis of the New Heterobimetallic Dinuclear Silyl Complexes (OC) 3 (R 3 Si)‐Fe(μ‐PR′R″)Pt(1,5‐COD)(Fe‐Pt), Phosphane Exchange Reactions of (OC) 3 (R 3 Si)Fe(μ‐PR′R″)Pt(PPh 3 )2(Fe‐Pt), and Preparation of the Dihydrido complexes [(OC) 3 Fe(μ‐PPh 2 )(μ‐H) 2 Pt(PR 3 ) 2 ][BF 4 ](Fe‐Pt) The dinuclear, silyl‐substituted complexes (OC) 3 (R 3 Si)Fe(μ‐PR′r″)Pt(1,5‐COD) (1) [μ‐PR′R″ = PPh 2 , PCY 2 , PHPh; SiR 3 = SiPh 3 , Si(OMe) 3 ] were prepared in high yields by the oxidative addition of the hydrido complexes (OC) 3 (PHR′R″)Fe(H)‐SiR 3 to Pt(1,5‐COD) 2 . Upon reaction of (OC) 3 (R 3 Si)Fe(μ‐PR′R″)Pt(PPh 3 ) 2 [μ‐PR′R″ = PPh 2 , PHCy; SiR 3 = SiPh 3 , SiPh 2 Me, SiPhMeCl, Si(OMe) 3 ] with two equivalents of PR   ‴ 3(PMe 3 , PBu 3 , PEt 3 ) or with one equivalent of chelating di‐phosphanes (vdpp, dppe, dppm) both PPh 3 ligands are displaced, and (OC) 3 (R 3 Si)Fe(μ‐PR′R″)Pt(PR   ‴ 3 ) 2 or (OC) 3 (R 3 Si)‐Fe(μ‐PR′R″)Pt[(PPh 2 ) 2 X] (X = CCH 2 , C 2 H 4 , CH 2 ) are formed, respectively. When one equivalent of PMe 3 is used, only the PPh 3 ligand trans to the μ‐PPh 2 bridge is substituted, and (OC) 3 (Ph 3 Si)Fe(μ‐PPh 2 )Pt(PPh 3 )(PMe 3 is formed. The 1,5‐COD ligand in 1 is displaced by P(OR) 3 to give (OC) 3 ‐(Ph 3 Si)Fe(μ‐PPh 2 )Pt[P(OR) 3 ] 2 (R = Me, Ph). The complexes (OC) 3 (Ph 3 Si)Fe(μ‐PPh 2 )Pt(PMe 3 ) 2 and (OC) 3 (Ph 3 Si)Fe(μ‐PPh 2 )Pt[(PPh 2 ) 2 CCH 2 ] were characterized by X‐ray structure analysis. The short Fe‐Si distances [233.0(2) and 235.6(3) pm] and the infrared v(CO) absorptions indicate that the Fe‐Pt bonds are quite polar. Protonation of (OC) 3 (Me 2 ‐PhSi)Fe(μPPh 2 )Pt(PPh 3 )2 with CF 3 COOH gives the hydrido‐bridged complex [(OC) 3 (Me 2 PhSi)Fe(μ‐PPh 2 )(μ‐H)Pt‐(PPh 3 ) 2 ][O 2 CCF 3 ]. Upon addition of an excess of HBF 4 · Et 2 O to (OC) 3 (R 3 Si)Fe(μ‐PPh 2 )Pt(PPh 3 ) 2 (R = Ph, OMe), (OC) 3 ‐Si)Fe(μ‐PPh 2 )Pt[Pt[P(OMe) 3 ]2 or (OC) 3 (Ph 2 MeSi)Fe(μ‐PPh 2 )‐Pt(dppe) R 3 SiF is split, and the corresponding μ‐dihydrido complexes [(OC) 3 Fe(μ‐PPh 2 )(μ‐H) 2 Pt(PR 3 ) 2 ][BF 4 ] are obtained.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here