z-logo
Premium
Nested Hierarchal Organization of Conservation for MicroRNAs and Their Putative Targets to Drosophila melanogaster
Author(s) -
Woodcock M. Ryan
Publication year - 2012
Publication title -
chemistry and biodiversity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.427
H-Index - 70
eISSN - 1612-1880
pISSN - 1612-1872
DOI - 10.1002/cbdv.201100358
Subject(s) - microrna , drosophila melanogaster , biology , computational biology , gene regulatory network , melanogaster , hierarchy , evolutionary biology , genetics , gene , gene expression , economics , market economy
This study examined microRNA network properties traced through taxonomic hierarchy considering both the acquisition of potential network targets and regulators. Primary literature review and database analyses were conducted to establish modules of conserved microRNAs across metazoan taxonomy. A hierarchical schema for the conservation of microRNAs and their putative targets to Drosophila melanogaster was engineered through comprehensive meta‐analysis, and conservation history of 90.39% of the total Drosophila dataset could be resolved through this hierarchical sampling regime; tracing from taxonomic order down to empire. The findings presented in this study represent a documentation of Drosophila microRNA regulatory network behavior thorough taxonomic hierarchy. MicroRNA regulatory network properties were found to transect taxonomic hierarchy. Newly acquired microRNAs from novel families reinforce the pre‐existing regulatory network, while expanding the target list to include a small number of novel genes. Lineage specific microRNAs were found to exhibit far fewer conserved targets than do the more broadly conserved microRNAs; even when considering only more recently emerged targets. There was a dramatic expansion in network complexity with the expansion of the microRNA repertoire, and this corresponds to the expansion in biological complexity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here