Premium
Modeling and simulating the deformation of human skeletal muscle based on anatomy and physiology
Author(s) -
Lemos Robson R.,
Rokne Jon,
Baranoski Gladimir V. G.,
Kawakami Yasuo,
Kurihara Toshiyuki
Publication year - 2005
Publication title -
computer animation and virtual worlds
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.225
H-Index - 49
eISSN - 1546-427X
pISSN - 1546-4261
DOI - 10.1002/cav.83
Subject(s) - computer science , finite element method , deformation (meteorology) , skeletal muscle , contraction (grammar) , anatomy , muscle contraction , human anatomy , biological system , materials science , physics , biology , composite material , endocrinology , thermodynamics
This paper describes the modeling and simulation of the deformation of human skeletal muscle at different structural levels based on sound scientific principles, experimental evidence, and state‐of‐art muscle anatomy and physiology. The equations of a continuum model of a muscle with realistic architecture, including internal arrangement of muscle fibers and passive structures, and deformation, including activation relations, was developed and solved with the finite element method. The continuum model is used as the basis of a strategy for controlling muscle deformation using activation relations. In order to demonstrate the functionality of the model, it was used to investigate force production and structural changes during contraction of the human tibialis anterior for maximally and submaximally activated muscle behavior. From a comparison with experimental data obtained from ultrasound imaging, we concluded that the modeling and simulation of the continuum based on physiologically meaningful parameters as described in the paper is both an excellent predictor of force production observations and of changes in internal geometry under various test conditions. It is therefore a valuable tool for controlling muscle deformation during movement. Copyright © 2005 John Wiley & Sons, Ltd.