Premium
Particle‐based realistic simulation of fluid–solid interaction
Author(s) -
Sun Hongquan,
Han Jiqing
Publication year - 2010
Publication title -
computer animation and virtual worlds
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.225
H-Index - 49
eISSN - 1546-427X
pISSN - 1546-4261
DOI - 10.1002/cav.379
Subject(s) - rigid body , rigidity (electromagnetism) , coupling (piping) , compressibility , computer science , torque , solid body , impulse (physics) , mechanics , fluid simulation , classical mechanics , fluid motion , smoothed particle hydrodynamics , physics , mechanical engineering , quantum mechanics , engineering , thermodynamics
Abstract In this paper a novel method for simulating incompressible viscous fluid and solid coupling is presented. In the coupling model, a rigid object is treated as a special fluid constrained to rigid body motion. To animate the coupling model, the Smoothed Particle Hydrodynamics method is used for solving the fluid motion equations. For keeping the rigidity of rigid objects, the total force and total torque exerted on solids is first worked out according to the impulse–momentum theorem, and then the movement of these rigid bodies is restricted to translations and rotations. Moreover, in order to prevent the fluids particles leaking into solids, a detection and correction procedure is presented, and the velocities of fluid particles will be tuned if the penetration is detected in this procedure. The proposed method can be implemented easily by extending the existing fluid solvers, the experimental results show that this method is capable of animating the realistic solid and fluid coupling. Copyright © 2010 John Wiley & Sons, Ltd.