Premium
Haptic collision handling for simulation of transnasal surgery
Author(s) -
Neubauer André,
Brooks Rupert,
Brouwer Iman,
Debergue Patricia,
Laroche Denis
Publication year - 2012
Publication title -
computer animation and virtual worlds
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.225
H-Index - 49
eISSN - 1546-427X
pISSN - 1546-4261
DOI - 10.1002/cav.1489
Subject(s) - haptic technology , computer science , collision detection , collision , collision response , simulation , process (computing) , point (geometry) , trajectory , computer vision , artificial intelligence , physics , geometry , computer security , mathematics , astronomy , operating system
Simulation of endoscopic navigation in the narrow nasal cavity poses important challenges to the computation of adequate and near‐realistic collision response and haptic feedback because extensive multidirectional contact and massive tissue deformations are inevitable. We present a virtual coupling algorithm that provides stable collision response as well as intuitive and smooth haptic interaction in all phases of the simulation. In each iteration, continuous collision detection between the point shell representing the surface of the virtual patient anatomy and the endoscope, represented by a cylinder, is performed. This allows for rolling back the instrument movement to the point in time the first collision occurred. Subsequently, a relaxation process locally optimizes the position and orientation of the instrument. A novel method of applying contact forces to colliding tissues and thus triggering appropriate deformations improves the fluency of navigation. This paper describes the algorithm and presents experimental results. © Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of Medical Devices, National Research Council Canada.