
Mitochondrial pathway and endoplasmic reticulum stress participate in the photosensitizing effectiveness of AE ‐ PDT in MG 63 cells
Author(s) -
Li KaiTing,
Chen Qing,
Wang DaWu,
Duan QinQin,
Tian Si,
He JuanWen,
Ou YunSheng,
Bai DingQun
Publication year - 2016
Publication title -
cancer medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 53
ISSN - 2045-7634
DOI - 10.1002/cam4.895
Subject(s) - endoplasmic reticulum , photodynamic therapy , apoptosis , mitochondrion , programmed cell death , intracellular , cytochrome c , microbiology and biotechnology , membrane potential , unfolded protein response , chemistry , reactive oxygen species , biology , biochemistry , organic chemistry
Photodynamic therapy ( PDT ) is a promising treatment in cancer therapy, with a photosensitizer activated by visible light. Aloe‐emodin ( AE ) is a promising photosensitive agent. In this study, the photosensitizing effects and possible mechanisms of AE ‐ PDT in MG 63 cells were evaluated. The efficiency of AE ‐ PDT was analyzed by MTT assay. The mode of cell death was investigated by Hoechst 33,342 staining and flow cytometer. The intracellular distribution of AE was detected with confocal microscopy. The formation of reactive oxygen species ( ROS ) was detected by DCFH ‐ DA . The mitochondrial membrane potential ( MMP ) was measured by Rhodamine 123. The expression of proteins including cytochrome c, caspase‐3, ‐9, and ‐12, CHOP and GRP 78 was detected by western blot. Apoptosis is the primary mode of cell death in our study, which occurs in a manner of depending on AE concentration and irradiation dose. Confocal microscopy showed that AE was primarily localized on the mitochondria and endoplasmic reticulum ( ER ) of MG 63 cells. AE ‐ PDT resulted in rapid increases of intracellular ROS production, which reached a peak at 2 h, followed by declining of mitochondrial membrane potential, releasing of cytochrome c from mitochondria into the cytoplasm, and up‐regulation of caspase‐3, ‐9, and ‐12, CHOP and GRP 78. These results suggest that death of MG 63 cells induced by AE ‐ PDT is triggered by ROS . Meanwhile, Mitochondria and ER serve as the subcellular targets, which are responsible for AE ‐ PDT ‐induced death of MG 63 cells.