Open Access
Haploidentical donor transplant is associated with secondary poor graft function after allogeneic stem cell transplantation: A single‐center retrospective study
Author(s) -
Lv WeiRan,
Zhou Ya,
Xu Jun,
Fan ZhiPing,
Huang Fen,
Xu Na,
Xuan Li,
Shi PengCheng,
Liu Hui,
Wang ZhiXiang,
Sun Jing,
Liu QiFa
Publication year - 2021
Publication title -
cancer medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 53
ISSN - 2045-7634
DOI - 10.1002/cam4.4353
Subject(s) - hazard ratio , medicine , cumulative incidence , transplantation , single center , hematopoietic stem cell transplantation , surgery , gastroenterology , retrospective cohort study , cytomegalovirus , complication , proportional hazards model , incidence (geometry) , graft versus host disease , confidence interval , immunology , viral disease , herpesviridae , human immunodeficiency virus (hiv) , physics , optics
Abstract Background Secondary poor graft function (sPGF) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo‐HSCT) related to poor outcome. We aimed to retrospectively evaluate the morbidity and hazard elements of sPGF after allo‐HSCT. Methods Eight hundred and sixty‐three patients who achieved initial engraftment of both neutrophils and platelets were retrospectively reviewed in this study. Results Fifty‐two patients developed sPGF within 180 days post‐transplants, with the median onset time was 62 days (range, 34–121 days) post‐transplants. The overall cumulative incidence of sPGF within 180 days post‐transplantation was 6.0%, with 3.4%, 3.4%, and 10.1%, respectively, in matched sibling donor (MSD), matched unrelated donor (MUD), and haploidentical donor (HID) transplant ( p < 0.0001). Multivariable analysis showed that HID (HID vs. MSD: hazard ratio [HR] 2.525, p = 0.004; HID vs. MUD: [HR] 3.531, p = 0.017), acute graft versus host disease (aGVHD) within +30 days ([HR] 2.323, p = 0.003), and cytomegalovirus (CMV) reactivation ([HR] 8.915, p < 0.0001) within +30 days post‐transplants were hazard elements of sPGF. The patients with sPGF had poorer survival than good graft function (51.7±8.1% vs. 62.9±1.9%, p < 0.0001). Our results also showed that only CMV reactivation was the hazard element for the development of PGF in HID transplant ([HR] 12.521 p < 0.0001). Conclusion HID transplant is also an independent hazard element of sPGF except for aGVHD and CMV reactivation.