z-logo
Premium
The relationship between lower neck shear force and facet joint kinematics during automotive rear impacts
Author(s) -
Stemper Brian D.,
Yoganandan Narayan,
Pintar Frank A.,
Maiman Dennis J.
Publication year - 2011
Publication title -
clinical anatomy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.667
H-Index - 71
eISSN - 1098-2353
pISSN - 0897-3806
DOI - 10.1002/ca.21172
Subject(s) - kinematics , facet joint , cadaveric spasm , facet (psychology) , cadaver , biomechanics , joint (building) , medicine , shear force , bending moment , orthodontics , shear (geology) , cervical vertebrae , structural engineering , geology , anatomy , physics , lumbar , engineering , psychology , social psychology , petrology , personality , classical mechanics , big five personality traits
A primary goal of biomechanical safety research is the definition of localized injury thresholds in terms of quantities that are repeatable and easily measureable during experimentation. Recent biomechanical experimentation using human cadavers has highlighted the role of lower cervical facet joints in the injury mechanism resulting from low‐speed automotive rear impacts. The present study was conducted to correlate lower neck forces and moments with facet joint motions during simulated rear impacts in an effort to define facet joint injury tolerance thresholds that can be used to assess automobile safety. Four male and four female intact head–neck complexes were obtained from cadaveric specimens and subjected to simulated automotive rear impacts using a pendulum‐minisled device. Cervical spine segmental angulations and localized facet joint kinematics were correlated to shear and axial forces, and bending moments at the cervico‐thoracic junction using linear regression. R 2 coefficients indicated that spinal kinematics correlated well with lower neck shear force and bending moment. Correlation slope was steeper in female specimens, indicating greater facet joint motions for a given loading magnitude. This study demonstrated that lower neck loads can be used to predict lower cervical facet joint kinematics during automotive rear impacts. Higher correlation slope in female specimens corresponds to higher injury susceptibility in that population. Although lower neck shear force and bending moment demonstrated adequate correlation with lower cervical facet joint motions, shear force is likely the better predictor due to similarity in the timing of peak magnitudes with regard to maximum facet joint motions. Clin. Anat. 24:319–326, 2011. © 2011 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here