z-logo
Premium
Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation
Author(s) -
Kolhe Parag,
Amend Elizabeth,
K. Singh Satish
Publication year - 2009
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.377
Subject(s) - chemistry , histidine , chromatography , solubility , cryoprotectant , tris , sodium acetate , crystallization , sodium , eutectic system , biochemistry , organic chemistry , cryopreservation , amino acid , biology , microbiology and biotechnology , alloy , embryo
Abstract Freezing of biologic drug substance at large scale is an important unit operation that enables manufacturing flexibility and increased use‐period for the material. Stability of the biologic in frozen solutions is associated with a number of issues including potentially destabilizing pH changes. The pH changes arise from temperature‐associated change in the p K a s, solubility limitations, eutectic crystallization, and cryoconcentration. The pH changes for most of the common protein formulation buffers in the frozen state have not been systematically measured. Sodium phosphate buffer, a well‐studied system, shows the greatest change in pH when going from +25 to −30°C. Among the other buffers, histidine hydrochloride, sodium acetate, histidine acetate, citrate, and succinate, less than 1 pH unit change (increase) was observed over the temperature range from +25 to −30°C, whereas Tris‐hydrochloride had an ∼1.2 pH unit increase. In general, a steady increase in pH was observed for all these buffers once cooled below 0°C. A formulated IgG2 monoclonal antibody in histidine buffer with added trehalose showed the same pH behavior as the buffer itself. This antibody in various formulations was subject to freeze/thaw cycling representing a wide process (phase transition) time range, reflective of practical situations. Measurement of soluble aggregates after repeated freeze–thaw cycles shows that the change in pH was not a factor for aggregate formation in this case, which instead is governed by the presence or absence of noncrystallizing cryoprotective excipients. In the absence of a cryoprotectant, longer phase transition times lead to higher aggregation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here