z-logo
Premium
Economic assessment of continuous processing for manufacturing of biotherapeutics
Author(s) -
Gupta Paridhi,
Kateja Nikhil,
Mishra Somesh,
Kaur Harmeet,
Rathore Anurag S.
Publication year - 2020
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.3108
Subject(s) - batch processing , consumables , continuous production , process engineering , monoclonal antibody , titer , productivity , computer science , environmental science , business , medicine , engineering , economics , antibody , marketing , immunology , environmental engineering , macroeconomics , programming language
Continuous processing offers a promising approach to revolutionize biotherapeutics manufacturing as reflected in recent years. The current study offers a comparative economic assessment of batch and continuous processing for the production of biotherapeutic products. Granulocyte‐colony stimulating factor (GCSF), a protein expressed in E . coli , and an IgG1 monoclonal antibody, were chosen as representatives of microbial and mammalian derived products for this assessment. Economic indicators—cost of goods (COGs), net present value (NPV), and payback time have been estimated for the assessment. For the case of GCSF, conversion from batch to integrated continuous manufacturing induced a $COGs/g reduction of 83% and 73% at clinical and commercial scales, respectively. For the case of mAb therapeutic, a 68% and 35% reduction in $COGs/g on translation from batch to continuous process was projected for clinical and commercial scales, respectively. Upstream mAb titer was also found to have a significant impact on the process economics. With increasing mAb titer, the $COG/g decreases in both operating modes. With titer increasing from 2 to 8 g/L, the $COG/g of batch process was reduced by 53%, and that of the continuous process was reduced by 63%. Cost savings in both the cases were attributed to increased productivity, efficient equipment and facility utilization, smaller facility footprint, and reduction in utilization of consumables like resin media and buffers actualized by the continuous processing platform. The current study quantifies the economic benefits associated with continuous processing and highlights its potential in reducing the manufacturing cost of biotherapeutics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here