z-logo
Premium
Process intensification for the removal of poly‐histidine fusion tags from recombinant proteins by an exopeptidase
Author(s) -
Kuo WenHui K.,
Chase Howard A.
Publication year - 2009
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.305
Subject(s) - exopeptidase , cleavage (geology) , histidine , imidazole , chemistry , enteropeptidase , maltose binding protein , chromatography , recombinant dna , fusion protein , biochemistry , biology , amino acid , paleontology , fracture (geology) , gene
Abstract This study describes the use of a hexa‐histidine tagged exopeptidase for the cleavage of hexa‐histidine tags from recombinant maltose binding protein (MBP) when both tagged species are bound to an immobilized metal affinity chromatography (IMAC) matrix. On‐column exopeptidase cleavage only occurred when the cleavage buffer contained an imidazole concentration of 50 mM or higher. Two strategies were tested for the on‐column tag cleavage by dipeptidylaminopeptidase (DAPase): (i) a post‐load wash was performed after sample loading using cleavage buffers containing varying imidazole concentrations and (ii) a post‐load wash was omitted following sample loading. In the presence of 50 mM imidazole, 46% of the originally adsorbed hexa‐histidine tagged MBP was cleaved, released from the column, and recovered in a sample containing 100% native (i.e., completely detagged) MBP. This strategy renders the subsequent purification steps unnecessary as any tagged contaminants remained bound to the column. At higher imidazole concentrations, binding of both hexa‐histidine tagged MBP and DAPase to the column was minimized, leading to characteristics of cleavage more closely resembling that of a batch cleavage. An on‐column cleavage yield of 93% was achieved in the presence of 300 mM imidazole, albeit with contamination of the detagged protein with tag fragments and partially tagged MBP. The success of the on‐column exopeptidase cleavage makes the integration of the poly‐histidine tag removal protocol within the IMAC protein capture step possible. The many benefits of using commercially available exopeptidases, such as DAPase, for poly‐histidine tag removal can now be combined with the on‐column tag cleavage operation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here