Premium
Molecularly imprinted cryogel cartridges for the selective recognition of tyrosine
Author(s) -
Bakhshpour Monireh,
Göktürk Ilgım,
Bereli Nilay,
Denizli Adil
Publication year - 2020
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.3006
Subject(s) - cartridge , molecularly imprinted polymer , chromatography , adsorption , molecular imprinting , chemistry , elution , polymerization , selectivity , polymer , materials science , organic chemistry , metallurgy , catalysis
Abstract Molecularly imprinted polymers are used for creating a specific cavity and selective recognition sites for the structure of a target molecule in a polymeric structure. In this study, specific molecularly imprinted cryogel cartridges were synthesized using two distinct functional monomers to compare imprinting efficiency for the selective recognition of Tyrosine (Tyr). Tyr‐imprinted cryogel cartridge (MIP1) was prepared using metal‐chelate coordination for the imprinting process by free‐radical bulk polymerization under frozen conditions, and Tyr‐imprinted cryogel cartridge (MIP2) was prepared in the same way using hydrophobic effects for imprinting. After the characterization of the cryogel cartridges was carried out, the optimum adsorption conditions of both were determined according to the different parameters such as flow rate (0.5–2.5 ml/min), pH of the medium (4.0–8.0), initial Tyr concentration (0.1–3.0 mg/ml), and temperature (4–45°C). Selectivity experiments of Tyr‐imprinted and non‐imprinted cryogel cartridges were carried out by using phenylalanine, tryptophan, and cysteine. Besides, the eluted Tyr from MIP1 and MIP2 cryogel cartridge were applied to FPLC system. Also, the reusability experiments of Tyr‐imprinted cryogel cartridges was observed no significant decrease in the adsorption capacity.