Premium
Development of a microchannel emulsification process for pancreatic beta cell encapsulation
Author(s) -
Bitar Christina M.E.,
Markwick Karen E.,
Treľová Dušana,
Kroneková Zuzana,
Pelach Michal,
Selerier Chloé M.O.,
Dietrich James,
Lacík Igor,
Hoesli Corinne A.
Publication year - 2019
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.2851
Subject(s) - microchannel , dispersity , materials science , chromatography , chemical engineering , cell encapsulation , microfluidics , chemistry , biomedical engineering , nanotechnology , self healing hydrogels , polymer chemistry , medicine , engineering
Abstract In this study, we developed a high‐throughput microchannel emulsification process to encapsulate pancreatic beta cells in monodisperse alginate beads. The process builds on a stirred emulsification and internal gelation method previously adapted to pancreatic cell encapsulation. Alginate bead production was achieved by flowing a 0.5–2.5% alginate solution with cells and CaCO 3 across a 1‐mm thick polytetrafluoroethylene plate with 700 × 200 μm rectangular straight‐through channels. Alginate beads ranging from 1.5–3 mm in diameter were obtained at production rates exceeding 140 mL/hr per microchannel. Compared to the stirred emulsification process, the microchannel emulsification beads had a narrower size distribution and demonstrated enhanced compressive burst strength. Both microchannel and stirred emulsification beads exhibited homogeneous profiles of 0.7% alginate concentration using an initial alginate solution concentration of 1.5%. Encapsulated beta cell viability of 89 ± 2% based on live/dead staining was achieved by minimizing the bead residence time in the acidified organic phase fluid. Microchannel emulsification is a promising method for clinical‐scale pancreatic beta cell encapsulation as well as other applications in the pharmaceutical, food, and cosmetic industries.