Premium
Strategic deployment of C HO expression platforms to deliver Pfizer's Monoclonal Antibody Portfolio
Author(s) -
Scarcelli John J.,
Shang Tanya Q.,
Iskra Tim,
Allen Martin J.,
Zhang Lin
Publication year - 2017
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.2493
Subject(s) - portfolio , monoclonal antibody , leverage (statistics) , computational biology , cell culture , computer science , biology , antibody , business , genetics , artificial intelligence , finance
Development of stable cell lines for expression of large‐molecule therapeutics represents a significant portion of the time and effort required to advance a molecule to enabling regulatory toxicology studies and clinical evaluation. Our development strategy employs two different approaches for cell line development based on the needs of a particular project: a random integration approach for projects where high‐level expression is critical, and a site‐specific integration approach for projects in which speed and reduced employee time spend is a necessity. Here we describe both our random integration and site‐specific integration platforms and their applications in support of monoclonal antibody development and production. We also compare product quality attributes of monoclonal antibodies produced with a nonclonal cell pool or clonal cell lines derived from the two platforms. Our data suggests that material source (pools vs. clones) does not significantly alter the examined product quality attributes. Our current practice is to leverage this observation with our site‐specific integration platform, where material generated from cell pools is used for an early molecular assessment of a given candidate to make informed decisions around development strategy. © 2017 American Institute of Chemical Engineers Biotechnol. Prog. , 33:1463–1467, 2017