Premium
Utilization of discard bovine bone as a support for immobilization of recombinant Rhizopus oryzae lipase expressed in Pichia pastoris
Author(s) -
Clementz Adriana L.,
Del Peso Gonzalo,
Canet Albert,
Yori Juan C.,
Valero Francisco
Publication year - 2016
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.2321
Subject(s) - pichia pastoris , rhizopus oryzae , lipase , adsorption , calcination , chemistry , chromatography , methanol , candida antarctica , nuclear chemistry , enzyme , recombinant dna , biochemistry , organic chemistry , catalysis , fermentation , gene
In this study the possibility of using discard bovine bone as support for immobilization of Rhizopus oryzae lipase expressed in Pichia pastoris was analyzed. Discard bovine bone were milled and then subjected to a chemical treatment with acetone in order to remove lipids and blood traces. Two types of supports were evaluated: bovine bone and calcined bovine bone for 2 h at 600°C. Supports were characterized by: ICP, SEM, XRD, FTIR, XPS, and N 2 adsorption isotherms. Calcined bovine bone presented appropriate characteristics for the lipase immobilization due to the removal of collagen: high porosity, large surface area and suitable porous structure. Biocatalysts were prepared with different initial enzyme load. For the equilibrium adsorption studies, the Langmuir isotherm was used to fit the data results. The immobilization occurs in monolayer to a value of 35 UA mg −1 . The activities of biocatalysts were tested in transesterification reaction of olive oil. For the enzyme load used in the test, a final yield percentage of 49.6 was achieved after six methanol additions and 180 min of reaction, similar values were obtained using Relizyme as support. Therefore, the bovine bone discard is an economical and appropriate choice for use support immobilization of enzymes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog ., 32:1246–1253, 2016