Premium
Biogenesis, characterization, and the effect of vicenin‐gold nanoparticles on glucose utilization in 3 T 3‐ L 1 adipocytes: A bioinformatic approach to illuminate its interaction with PTP 1B and AMPK
Author(s) -
Chockalingam Shivashri,
Thada Rajarajeshwari,
Dhandapani Ramesh Kumar,
Panchamoorthy Rajasekar
Publication year - 2015
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.2112
Subject(s) - ampk , chemistry , zeta potential , colloidal gold , intracellular , biophysics , 3t3 l1 , nanoparticle , in vitro , nanotechnology , biochemistry , materials science , phosphorylation , protein kinase a , biology , adipogenesis
This study reported the synthesis of Vicenin‐2 gold nanoparticles (VN‐AuNPs) and evaluated their effect on the glucose utilization efficiency of 3T3‐L1 adipocytes. The VN‐AuNPs were characterized by microscopic, DLS and spectral analysis. The bio‐reducing efficiency of Vicenin‐2 (VN) was computed and confirmed by HPLC analysis. The stability of VN‐AuNPs in various physiological media was explored. The cytotoxicity and glucose uptake assays were performed in 3T3‐L1 adipocytes. The docking of VN with PTP1B and AMPK was also performed. The color change and UV absorption at 537 nm preliminarily confirmed the VN reduced gold nanoparticles. The VN‐AuNPs appeared as spherical particles (57 nm) and face centered cubic crystals under TEM and XRD analysis, respectively. Its zeta potential was found to be −6.53 mV. The FT‐IR spectra of VN and its AuNPs confirmed its stability. The computed reducing potential of VN was similar to the extent of VN utilized during the synthesis of VN‐AuNPs. The VN‐AuNPs showed a remarkable stability in different physiological media. At 100 µM concentration, VN‐AuNPs displayed 78.21% cell viability. A concentration dependent increase in glucose uptake was noted in 3T3‐L1 adipocytes when incubated with VN‐AuNPs. The docking data revealed a strong interaction of VN with the binding pockets of PTP1B and AMPK. This demonstrates that the fabricated VN‐AuNPs might enhance the intracellular VN availability mediated cellular glucose utilization and this would serve as a novel nanodrug for the management of diabetes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog ., 31:1096–1106, 2015