z-logo
Premium
Comparative technoeconomic analysis of a softwood ethanol process featuring posthydrolysis sugars concentration operations and continuous fermentation with cell recycle
Author(s) -
Schneiderman Steven J.,
Gurram Raghu N.,
Menkhaus Todd J.,
Gilcrease Patrick C.
Publication year - 2015
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.2102
Subject(s) - hydrolysate , chemistry , fermentation , sugar , pulp and paper industry , ethanol fuel , ethanol , chromatography , food science , hydrolysis , biochemistry , engineering
Economical production of second generation ethanol from Ponderosa pine is of interest due to widespread mountain pine beetle infestation in the western United States and Canada. The conversion process is limited by low glucose and high inhibitor concentrations resulting from conventional low‐solids dilute acid pretreatment and enzymatic hydrolysis. Inhibited fermentations require larger fermentors (due to reduced volumetric productivity) and low sugars lead to low ethanol titers, increasing distillation costs. In this work, multiple effect evaporation (MEE) and nanofiltration (NF) were evaluated to concentrate the hydrolysate from 30 g/l to 100, 150, or 200 g/l glucose. To ferment this high gravity, inhibitor containing stream, traditional batch fermentation was compared with continuous stirred tank fermentation (CSTF) and continuous fermentation with cell recycle (CSTF‐CR). Equivalent annual operating cost (EAOC = amortized capital + yearly operating expenses) was used to compare these potential improvements for a local‐scale 5 MGY ethanol production facility. Hydrolysate concentration via evaporation increased EAOC over the base process due to the capital and energy intensive nature of evaporating a very dilute sugar stream; however, concentration via NF decreased EAOC for several of the cases (by 2 to 15%). NF concentration to 100 g/l glucose with a CSTF‐CR was the most economical option, reducing EAOC by $0.15 per gallon ethanol produced. Sensitivity analyses on NF options showed that EAOC improvement over the base case could still be realized for even higher solids removal requirements (up to two times higher centrifuge requirement for the best case) or decreased NF performance. © 2015 American Institute of Chemical Engineers Biotechnol. Prog ., 31:946–956, 2015

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here